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p-Facial diastereoselectivity effects of the substituent in 4-position on the nucleophilic addition of substi-
tuted adamantan-2-ones were observed for the methylation reaction of 4-chloroadamantan-2-ones. NMR
study revealed that when chlorine atom is in axial stereochemical position, exclusively anti-addition
occurs, whereas selective preference for syn-addition was observed with stereochemical equatorial posi-
tion for chloro substituent. The success of this strategy can be attributed to the important role that CeCl3

plays in increasing the nucleophilicity and decreasing the basicity of the methylorganometallic reagent.
� 2008 Elsevier Ltd. All rights reserved.
Adamantanes continue to be a significant endeavor and has
stimulated great interest in many chemists in these last years. They
possess a variety of useful applications as building blocks for com-
plex molecules with pharmaceutical activity,1 as model com-
pounds for studying reaction mechanisms, for problems in
stereochemistry, and for spectroscopic investigations.2 The ada-
mantane molecule, with rare exceptions,3 is not used as the start-
ing material for the preparation of adamantyl derivatives. Instead
haloadamantanones are often employed in these procedures,4

whilst the nucleophilic addition to carbonyl group in adamantan-
2-ones has been much less utilized. In the latter case, when
asymmetrically substituted substrates are placed to react with
alkylorganometallic reagents, different (Z/E) diastereoisomeric
adamantan-2-ols are produced with different efficiency.5 Despite
such a p-facial stereochemical effect has been masterfully studied
by Adcock et al.2b,6 the nature of electronic factors induced by the
substituent and the dynamics of the reaction remain subjects of
continuous debate. A pertinent example is found in works of
Duddeck7 and Nelsen8 on the fact that bulky organometallic
reagents may induce significant deviations from the usual
symmetrical adamantane geometry. With these reactants, a six-
membered ring to which the alkyl group is fixed in an axial
position was observed. Instead, with the smaller methylmetallic
ll rights reserved.
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reagent, the substituent effect is the dominating one factor in the
stereoselectivity.

The diastereoselectivities (Z/E) for the NaBH4 reduction and
methylation of a series of 5-substituted adamantan-2-ones are
well studied; however, to the best of our knowledge, reports on
the methylation of 4-substituted adamantan-2-ones are scarse.2a,2b

Le Noble et al.9 previously explored the diastereoselective reduc-
tion of 4-equatorial substituted adamantan-2-ones, and it is also
known that 4-axially substituted adamantan-2-ones undergo
nucleophilic addition to carbonyl group with lower yield than
the corresponding 4-equatorial compounds.10 For all these reasons,
and given that the facial selectivity of the methylation reaction is
expected larger than that of hydride reduction,11 we have chosen
the synthesis of 4-substituted 2-methyladamantan-2-ols. Herein
we report the results of our study on the methylation of axial-(1)
and equatorial-4-chloroadamantan-2-one (2).12
Figure 1.
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As shown in Figure 1, the attack of the organometallic reagent
to the carbonyl group can be syn- or anti-periplanar respect to
the C-4 substituent.13 The results exhibit that the stereodifferenti-
ation of the chemical environments induced by chloro substituent
position produces remarkable equatorial/axial diastereoselectivity
in the methyl nucleophilic attack.

The 4(ax)-chloroadamantan-2-one (1) and 4(eq)-chloroada-
mantan-2-one (2) were prepared from commercially available
adamantan-2-one, and the pure stereoisomers (4(ax)- and 4(eq)-
chloroadamantan-2-ones) were isolated by separation of the reac-
tion mixture on silica gel column.14,15

Treatment of 1 with methyllithium produced diastereoisomer 3
as the exclusive anti-adduct in good yield by carefully monitoring
the reaction conditions (Scheme 1).16 So far only organometallic
reagents bulky enough (tert-butyl and isopropyl) were able to pro-
vide adamantan-2-ol derivatives in moderate yields.8

The structure of the 4(ax)-chloro-2-methyladamantan-2-ol 3
was established by spectral means.17 In particular, 1H NMR
spectrum showed a double doublet at d 4.51 ppm with coupling
constants of J = 4.27 Hz and J = 1.71 Hz, respectively. To unambigu-
ously assess the structure of 3, we proceeded preliminarily to the
full assignment of the NMR signals18 that could be done on the
basis of gCOSY, TOCSY-1D, gHSQC, gHMBC, and NOESY-1D spectra.
The following stereochemical study of 3 was directed to confirm
the stereochemistry at C-4 and, mainly, to assign the relative posi-
tion of the methyl and the hydroxyl group at C-2 (Fig. 2). The 1H
NMR spectra of 2,2-disubstituted adamantanes are characterized
by the large chemical shift separation between the c-CH2 geminal
protons due to the c-syn interactions between the substituents and
the c-protons.

The axial protons have a larger chemical shift than the equato-
rial ones, and the c-effect is amplified by the presence of a lone pair
on the syn-substituent, so H-9ax/eq and H-4ax/eq show a larger
chemical shift separation than H-8ax/eq and H-10ax/eq.19 On the
basis of similar considerations, taking also into account an addi-
tional c-effect due to the chlorine at C-4, we attributed the geminal
signals at d 1.60 ppm and d 2.50 ppm to H-9eq and H-9ax, respec-
tively. This assignation was confirmed by the HMBC correlation of
H-9 with C-5, C-1, C-4, and C-2. Having H-9 the larger chemical
shift separation, we concluded that the synthesized alcoholic
epimer is the 2(ax)-OH (3 in Scheme 2). The stereochemistry was
confirmed by NOESY-1D experiments, which revealed key correla-
tions between H-4 and H-10eq, H-4, and H-6B, Me and H-8ax, Me
O
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and H-10ax, OH, and H-9ax, as shown in Figure 2. This indicates
that the methyl group approaches the carbonyl group of the 4-axi-
ally substituted adamantan-2-one 1 exclusively from the back-side
(anti attack) producing diastereoisomer alcohol 3.

This discovery prompted us to investigate this diastereoselec-
tive methylation by treatment with methyllithium of the 4-substi-
tuted adamantan-2-one when chlorine atom is in equatorial
stereochemistry (2). We tested the effectiveness of methyllithium
with poor results.20

To overcome these drawbacks, we planned a different methyl-
ation reaction for the equatorial substrate 2. In the course of the
program of some us aimed to explore the important role that cer-
ium(III) chloride plays in exerting a strong activation of carbonyl
compounds toward addition of Grignard reagents,21 we sought to
extend methylation reaction on the addition of organocerium spe-
cies. The organometallic compound prepared from dry CeCl3 and
methylmagnesium compound22 stereoselectively adds to 4(eq)-
chloroadamantan-2-one for producing an alcohol unseparable
mixture of diastereoisomers (4 with eq-OH and 5 with ax-OH)
(Scheme 2). The 1H NMR spectrum showed two distinctive multi-
plets at d 4.40 ppm and 4.93 ppm, typical of H-4 of diastereoiso-
mers 4 and 5, respectively. In the latter, H-4 proton is more
deshielded than in the former. This most significant difference
can be explained on the basis of the c-syn effect mentioned above.
In fact, when the axial H-4 is syn respect to the hydroxyl group at
C-2, the downfield shift is increased by the lone pair, as in the case
of the minor component of the diastereoisomeric mixture. Thus,
the main component was identified as 4(eq)-chloro-2(eq)-hydro-
xy-2(ax)-methyladamantane (4). Furthermore, the 13C NMR signals
of the product mixture 4 and 5 were identified by comparison with
the spectral data reported by Adcock.2a

The above NMR results show that 4-Cl atom in adamantan-2-
one induces an opposite p-facial selectivity in the reaction with
methylmetallic reagents, depending on its spatial orientation.
When 4-Cl is axially oriented (1) exclusively anti-addition was ob-
served, whereas a selective preference for syn-addition results with
the chloro substituent in the 4-equatorial position (2). In order to
explore the possibility of having the diastereoisomer 4(ax)-
chloro-2(eq)-hydroxy-2(ax)-methyladamantane, we have thought
at the hydration of 4(ax)-chloromethylideneadamantane (7).
Unfortunately, any attempt to affect the methylenation of 1 by
treatment with methylenetriphenylphosphorane (DMSO, 60 �C)23

resulted in complex mixture of no characterizable products. In
choosing an alternative method for the introduction of the exocy-
clic methylene, we reasoned that a reagent which would irrevers-
ibly add at the hindered carbonyl would be required. Since we
observed that organocerium reagents show remarkable nucleo-
philic properties in addition to adamantanone 1, we established
that the use of trimethylsilylmethylmagnesium chloride in THF
and in the presence of dry CeCl3 produced a single tertiary carbinol
6 (Scheme 3). The stereochemistry was assigned by analogy of
product 3. This 2-hydroxy silane was converted to the correspond-
ing methylene compound 7 (Peterson methylenation procedure)24

by treatment with a catalytic amount of p-toluenesulfonic acid in
MeOH.25 Contrary to what had been reported in the literature,2a,2b
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even after several efforts we were unable to carry out the hydra-
tion of (7). Then, transformation of 7 to the target 4(ax)-chloro-
2-methyladamantan-2-ols was accomplished by the following
sequence: (i) epoxidation (2.1 equiv of m-chloroperoxybenzoic
acid, 2.5 equiv of NaHCO3 in CH2Cl2 at 0 �C for 30 min), and the
diastereoisomeric mixture product 8 was used directly without
any purification; and (ii) oxirane reduction (with 4.5 equiv of
LiAlH4 in ether, at room temperature, 59% yield from 7).26

Synthetic column chromatographic purified product was com-
pared with authentic 4(ax)-chloro-2-methyladamantan-2-ols by
1H and 13C NMR, IR and mass spectroscopies, and was found to
be identical to the structure of 4(ax)-chloro-2(ax)-hydroxy-2(eq)-
methyladamantane (3).

Finally, in view of the continuing debate concerning the effect
on facial selectivity of the substituent to the 4-position on the
nucleophilic addition of substituted adamantan-2-ones, it is
important to emphasize that the results of this study clearly
indicate that the stereochemistry of the substituent directs the
nucleophilic attack.2a,2b In particular, the objective of this work
was to gain insight into the reaction of methylation of 4-chloroad-
amantanones, and to make use of the results for the synthesis of
2,4-disubstituted adamantyl derivatives. Further work is in
progress in our laboratories to attempt the preparation of units
which might function as important synthetic targets in organic
chemistry.
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4. Janku, J.; Burkhard, J.; Vodička, L. Collect. Czech. Chem. Commun. 1987, 52, 752–

755.
5. (a) Wilmot, N.; Marsella, M. J. Org. Lett. 2006, 7, 3109–3112; (b) González-Nuñez,

M. E.; Royo, J.; Mello, R.; Bágnena, M.; Ferrer, J. M.; deArellano, C. R.; Asensio, G.;
Prakash, G. K. S. J. Org. Chem. 2005, 70, 7919–7924; (c) González-Nuñez, M. E.;
Royo, J.; Castellano, G.; Andreu, C.; Boix, C.; Mello, R.; Asensio, G. Org. Lett. 2000, 2,
831–834; (d) le Noble, W. J.; Gung, B. W. Chem. Rev. 1999, 99, 1069–1480.

6. (a) Adcock, W.; Trout, N. A. Chem. Rev. 1999, 99, 1415–1436; (b) Adcock, W.;
Cotton, J.; Trout, N. J. Org. Chem. 1994, 59, 1867–1876; (c) Adcock, W.; Coope, J.;
Shiner, V. J. Jr.; Trout, N. A. J. Org. Chem. 1990, 55, 1411–1412.

7. (a) Duddeck, H.; Rosenbaum, D. J. Org. Chem. 1991, 56, 1700–1707; (b)
Duddeck, H.; Rosenbaum, D. J. Org. Chem. 1991, 56, 1707–1713.

8. Nelsen, S. F.; Kapp, D. L.; Akaba, R.; Evans, D. H. J. Am. Chem. Soc. 1986, 108,
6863–6871.

9. Kaselj, M.; Le Noble, W. J. J. Org. Chem. 1996, 61, 4157–4160.
10. Duddeck, H.; Brosch, D.; Koppetsch, G. Tetrahedron 1985, 41, 3753–3762.
11. (a) Xie, M.; Le Noble, W. J. J. Org. Chem. 1989, 54, 3863; (b) Lin, M.-H.; Silver, J.

E.; le Noble, W. J. J. Org. Chem. 1988, 53, 5155–5158.
12. It is known that the high reactivity of 4-chloroadamantan-2-ones with

organometallic reagents for giving halogen-metal exchange.7a

13. The numbering of the adamantane carbons not necessarily conforms to IUPAC
nomenclature. For better comparison, however, we employed a numbering
which is consistent throughout irregardless of the substituents. The term axial
(ax) and equatorial (eq) denote the stereochemical position of the substituent
with respect to the six-membered ring bearing the highest number of
substituents.

14. (a) Sasaki, T.; Eguchi, S.; Torn, T. J. Org. Chem. 1970, 35, 4100–4114; (b)
Murofushi, Y.; Kimura, M.; Iijima, Y.; Yamazaki, M.; Kaneko, M. Chem. Pharm.
Bull. 1987, 35, 4442–4453.

15. Spectroscopical data of compounds 1 and 2 are identical to those previously
reported by: (a) Janku, J.; Burkhard, J.; Vodička, L. Collect. Czech. Chem. Commun.
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